

Contexte de l'étude

Disparité sur la ressource en eau aussi bien dans l'espace que dans le temps

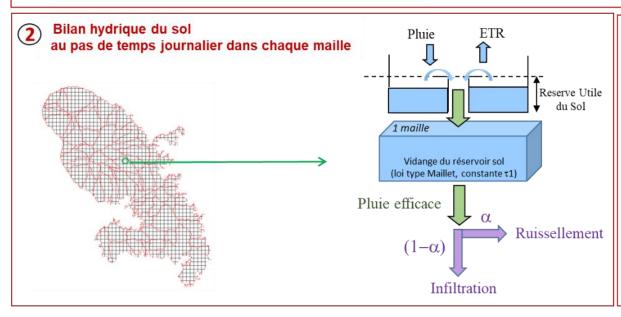
90% AEP à partir de 5 bassins versants : rivière Capot, Lorrain, Galion, Case Navire et la Lézarde-Blanche

Globalement, pas de manque d'eau en Martinique mais situation critique en carêmes secs avec des prélèvements entrainant un dépassement des débits réservés des rivières allant parfois jusqu'à leur assèchement

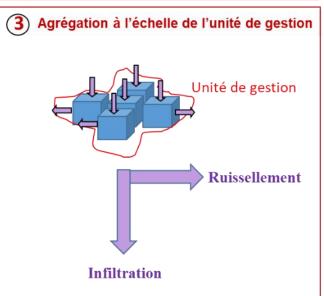
SDAGE

Nécessité d'une meilleure gestion de la ressource

Amélioration de la connaissance de la ressource disponible et prélèvements réalisés dans un milieu très contrasté (mesure N°2 du programme de mesure)


Objectif de l'étude

- Modélisation des volumes d'eau souterraine et d'eau de surface disponibles en Martinique
- Données d'entrée indispensables au modèle de gestion de la ressource en eau de l'ODE



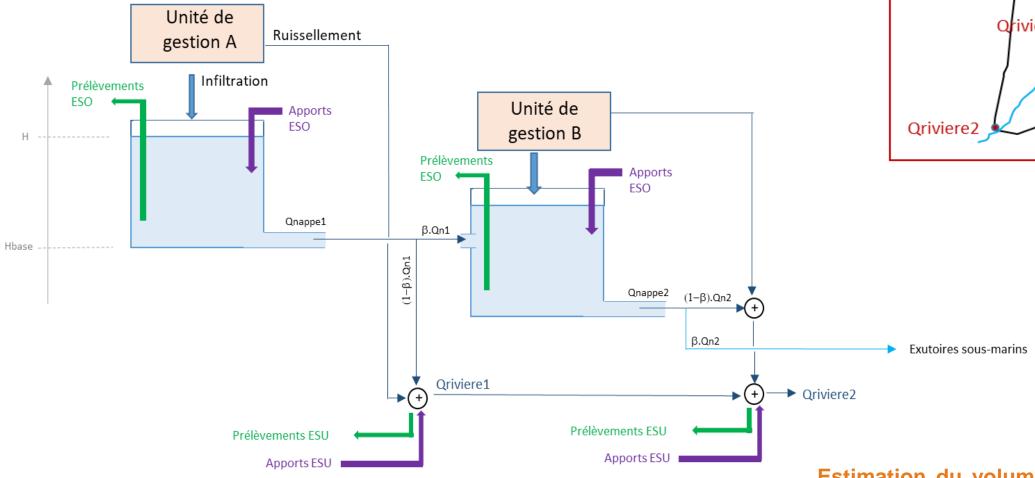
Modélisation globale du cycle de l'eau

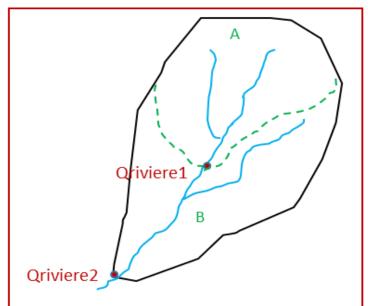
Données et chroniques spatialisées à l'échelle du km² Coefficient de ruissellement Réserve Utile Occupation du sol **ETP** Précipitations (cultures) mm/an 500 - 750 T50 -1000 1000 - 1500 1500 - 2000 **1750 - 2000** 2500 - 3000 banane Cartes d'illustration: moyennes interannuelles 1991 – 2017

Chroniques journalières de pluie et ETP

Paramètres RUmax, Kc et coefficient de ruissellement (α)

Modélisation sous Matlab/Simulink@


Découpage en 69 unités de gestion (UG)



Bilan hydrique du sol à l'échelle du km², et agrégation à l'échelle de l'unité de gestion

Modélisation globale du cycle de l'eau

Schéma de principe du modèle de réservoirs pour les sous-bassins emboités

Estimation du volume d'eau souterraine et d'eau de surface à l'exutoire de chaque unité de gestion

Données d'entrée du modèle

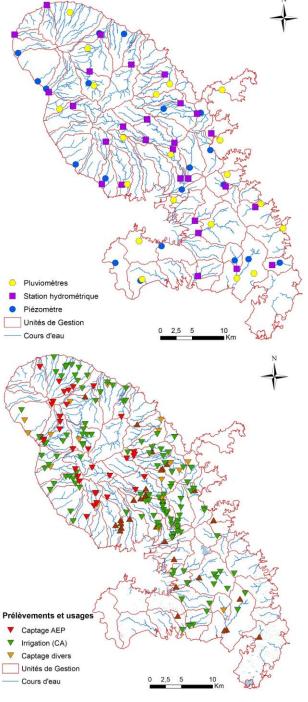
Débits des rivières

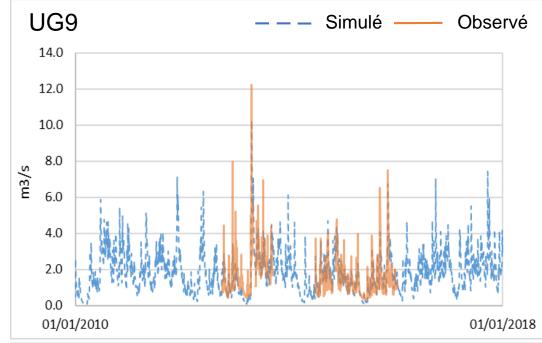
• 28 stations hydrométriques

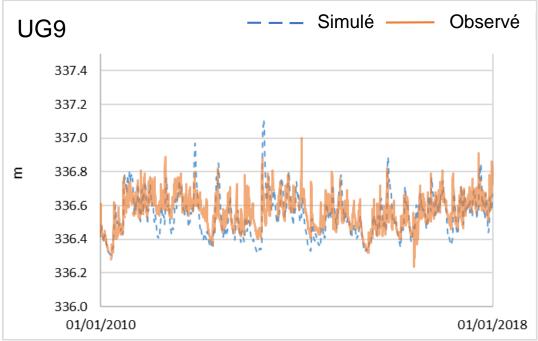
Niveau des aquifères

• 13 piézomètres

Prélèvements AEP


• 26 UPEP et 35 captages issus des RAD, RPQS et de la CTM


Prélèvements industriel et agricole


- BNPE
- PISE
- besoins estimés pour l'irrigation issues du modèle de la Chambre d'agriculture

Rejets

STEP dans les eaux de surface

Calage du modèle et résultats des simulations

Exemple du UG9

Amont de la rivière Capot

- Station hydrométrique : Pont de Mackintosh
- Piézomètre : Morne Rouge Desgrottes
- → Objectif : ajuster les variables afin d'obtenir des simulations semblables aux niveaux observés

Quelles sont les variables ?

- Tau1 : coefficient de tarissement du réservoir sol
- Tau2 : coefficient de tarissement du réservoir nappe
- Porosité efficace de l'aquifère
- β : coefficient de perte en mer ou de calage pour les UG en cascade
- → Extrapolation si possible, des variables, aux UG possédant des caractéristiques géologiques et géomorphologiques similaires

Bilan annuel du cycle de l'eau

Exemple de résultats sur la période 2008 – 2017 (10 ans)

Schéma à l'échelle des unités de gestion et du bassin Martinique

Prélèvements 54 Mm³ = 4% du débit des rivières 464 Mm³ d'eau souterraine circulent

	Unités de gestion	1	2	3	Etc
	Surface (km²)	9,82	10,90	39,77	xx
	Porosité en %	10%	10%	20%	xx
Données d'entrée et de modélisation	Pluie	31,13	46,78	138,95	xx
	Peff	15,83	32,82	82,02	xx
	Infiltration	3,36	7,48	41,71	xx
	Ruissellement	12,38	25,14	39,87	xx
Prélèvements	Captage AEP Mm3/an	0	0,06	0,05	xx
	Captage Agri Mm3/an	0	0	0	xx
	Captage Indus Mm3/an	0	0	0	xx
	Forage AEP Mm3/an	0	0	0	xx
Pré	Forage agricole Mm3/an	0	0	0	xx
	Forage Indus Mm3/an	0	0	0	xx
Apports ESU	Rejet STEP moy (Mm3/an)	0	0	0	xx
	Débit vidange moy (Mm3/an)	2,01	6,69	24,74	xx
Résultats	Débit exutoire moy (Mm3/an)	14,39	31,76	64,26	xx
	Débit fuite moy (Mm3/an)	1,34	0,74	16,49	xx

Bilan mensuel par UG des eaux de surface

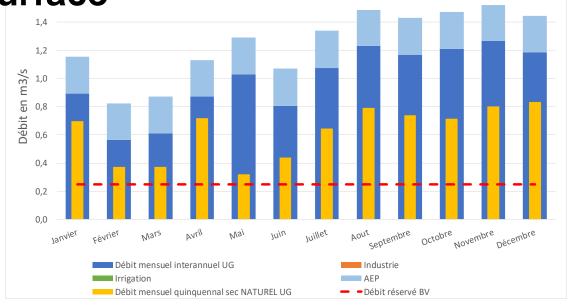
ETAT NATUREL

MOYENNE INTERANNUELLE

	Unité/ Mois	Janvier	février	mars	Etc
	Jours	31	28	31	30
Débit mensuel interannuel UG2		QM1	QM2	QM3	QM4
Débit mensuel interannuel NATUREL UG2		QM nat1	QM nat2	QM nat3	QM nat4
Débit mensuel interannuel NATUREL BV2	m³/s	QM nat1 BV	QM nat1 BV	QM nat1 BV	QM nat1 BV
Débit réservé BV2	m ⁻ /s	Dr	Dr	Dr	Dr
Débit mensuel prélevable UG2		Dp 1	Dp 2	Dp 3	Dp 4
Débit mensuel prélevable BV2		Dp BV1	Dp BV2	Dp BV3	Dp BV4
Volume mensuel interannuel NATUREL UG2		VM nat1	VM nat2	VM nat3	VM nat4
Volume mensuel interannuel NATUREL BV2		VM nat BV1	VM nat BV2	VM nat BV3	VM nat BV4
Volume réservé BV2	m ³	Vr	Vr	Vr	Vr
Volume mensuel prélevable UG2		Vp1	Vp2	Vp3	Vp4
Volume mensuel prélevable BV2		Vp BV1	Vp BV2	Vp BV3	Vp BV4

QUINQUENNAL SEC

	Unité/ Mois	Janvier	février	mars	avril
Débit quinquennal sec UG2	m³/s	Qm sec 1	Qm2	Qm3	Qm4
Débit mensuel quinquennal sec NATUREL UG2		Qm nat sec 1	Qm nat sec 2	Qm nat sec 3	Qm nat sec 4
Débit mensuel quinquennal sec NATUREL BV2		Qm nat sec BV1	Qm nat sec BV2	Qm nat sec BV3	Qm nat sec BV4
Débit mensuel prélevable UG2		Qp sec1	Qp sec 2	Qp sec 3	Qp sec4
Débit mensuel prélevable BV2		Qp sec BV1	Qp sec BV2	Qp sec BV3	Qp sec BV4
Volume mensuel quinquennal sec NATUREL UG2		Vm sec nat1	Vm sec nat2	Vm sec nat3	Vm sec nat4
Volume mensuel quinquennal sec NATUREL BV2	3	Vm sec nat BV1	Vm sec nat BV2	Vm sec nat BV3	Vm sec nat BV4
Volume mensuel prélevable UG2	m ³	Vp sec1	Vp sec 2	Vp sec 3	Vp sec4
Volume mensuel prélevable BV2		Vp sec BV1	Vp sec BV2	Vp sec BV3	Vp sec BV4
Respect naturel du débit réservé actuel UG2		OUI / NON	OUI / NON	OUI / NON	OUI / NON


SIMULATION AVEC AEP sur BV :

MOYENNE INTERANNUELLE

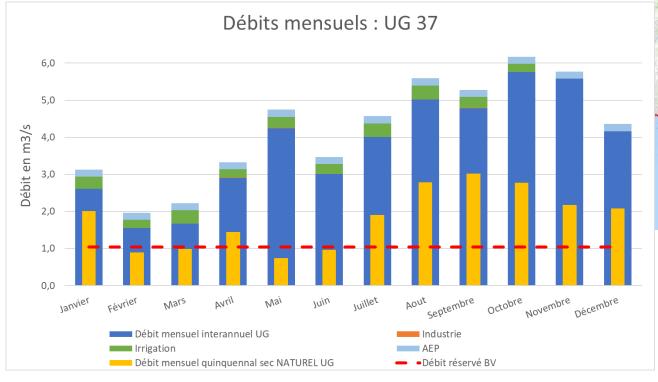
	Unité/ Mois	Janvier	février	mars	avril
Débit mensuel interannuel naturel BV2	m³/s	QM AEP1	QM AEP2	QM AEP3	QM AEP4
Volume mensuel interannuel naturel BV2	m ³	VM AEP1	VM AEP2	VM AEP3	VM AEP4
Volume mensuel prélevable hors AEP du BV2	m ³	Vp AEP1	Vp AEP2	Vp AEP3	Vp AEP4
Unité en tension		OUI / NON	OUI / NON	OUI / NON	OUI / NON

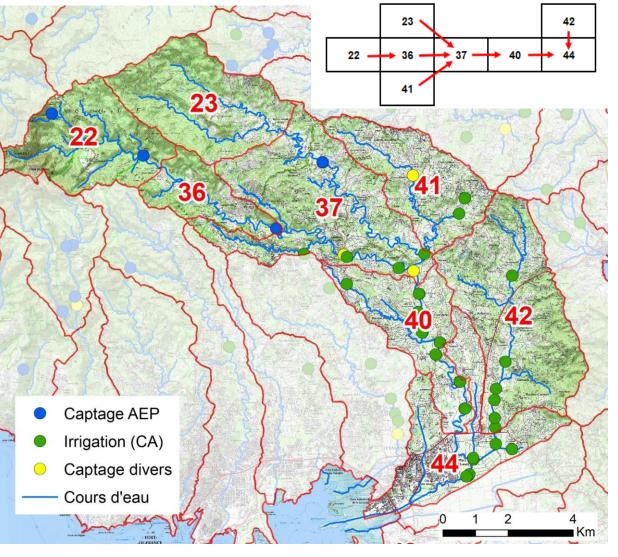
QUINQUENNAL SEC

	Unité/ Mois	Janvier	février	mars	avril
Débit mensuel quinquennal sec BV2	m³/s	Qm sec AEP1	Qm sec AEP2	Qm sec AEP3	Qm sec AEP4
Volume mensuel guinguennal sec BV2	ww. m łem.r	Vm sec AEP1	Vm sec AEP2	Vm sec AEP3	Vm sec AEPA
Volume mensuel prelevable BV2		Vp sec AEP1	Vp sec AEP2	Vp sec AEP3	Vp sec AEP4
Unité en tension		OUI / NON	OUL / NON	OUI / NON	OUI / NON

Débits mensuels : UG 22

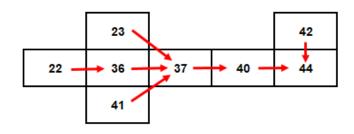
Informations clefs pour chaque UG:

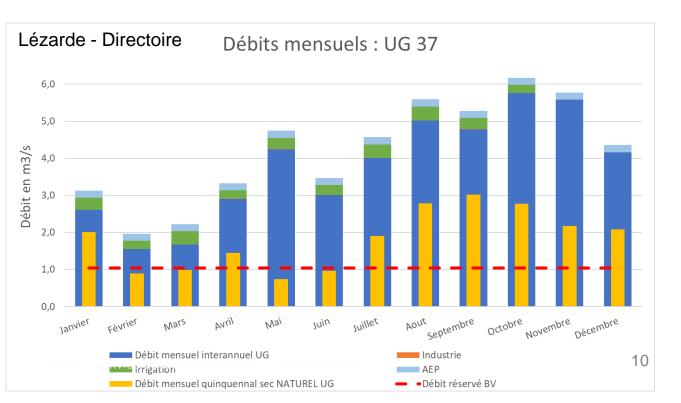

- Module de l'UG
- Débit réservé = 20 % du module
- Débit mensuel naturel et quinquennal sec
- Volumes prélevés
- → Respect des débits réservés
- → Unité de gestion en tension si prélèvements
- en moyenne interannuelle
- en quinquennal sec



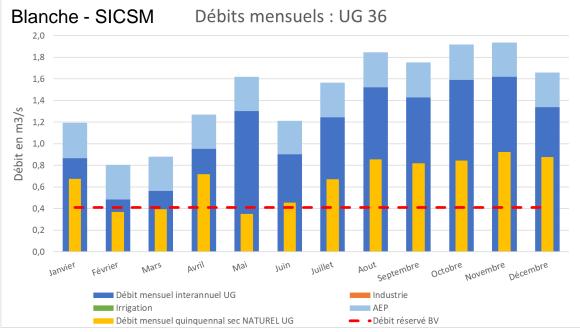
Exemple de l'UG37, Lézarde, Blanche et Petite Lézarde

Station hydrométrique : Bouliki aval, Lézarde 2, Prise SICSM, St Maurice, <u>Gué Désirade</u>

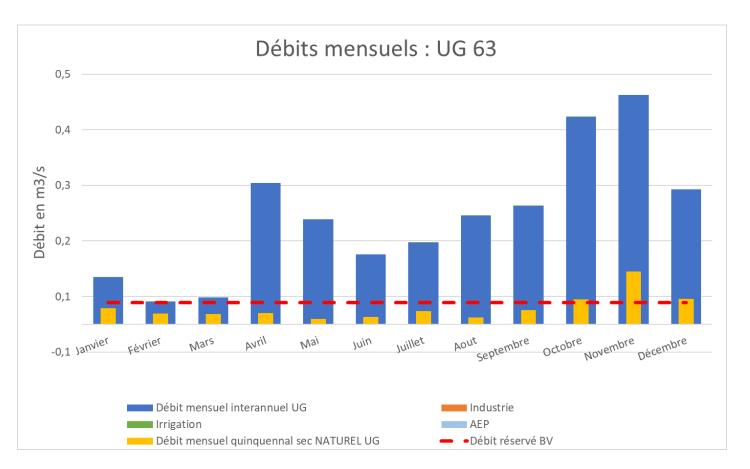

Captages amonts : Bouliki (Durand), Blanche, Lézarde (directoire)

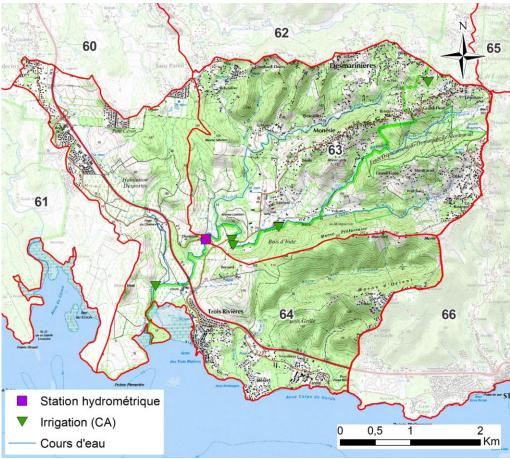





→ Non respect du débit réservé en quinquennal sec naturel/hors prélèvements (5 mois de l'année)

Exemple de l'UG37, Lézarde, Blanche et Petite Lézarde

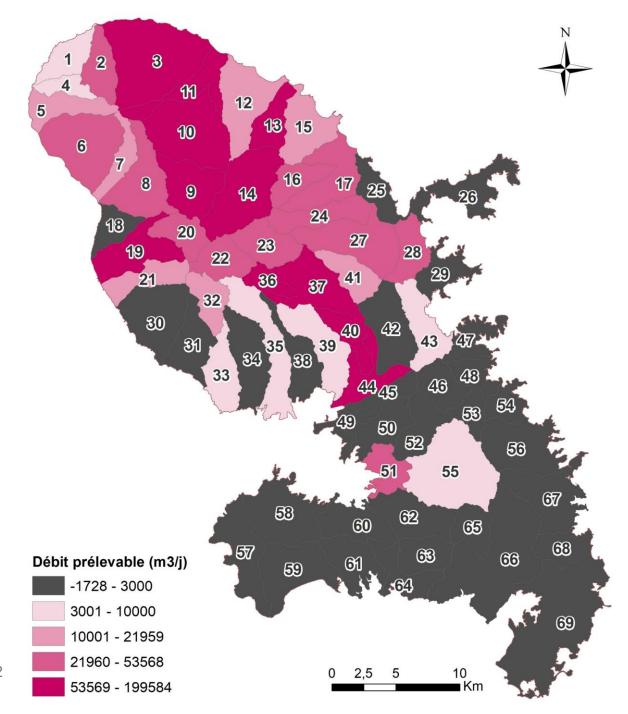


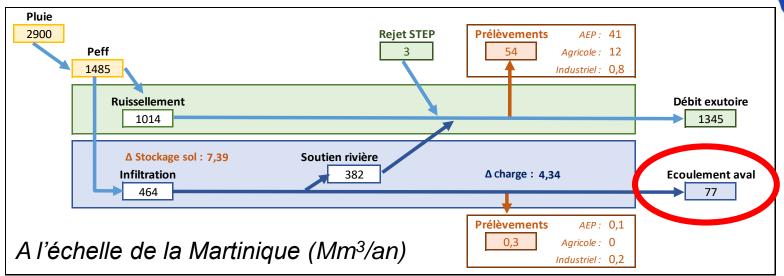


Exemple de l'UG63, rivière Oman

Station hydrométrique : Dormante

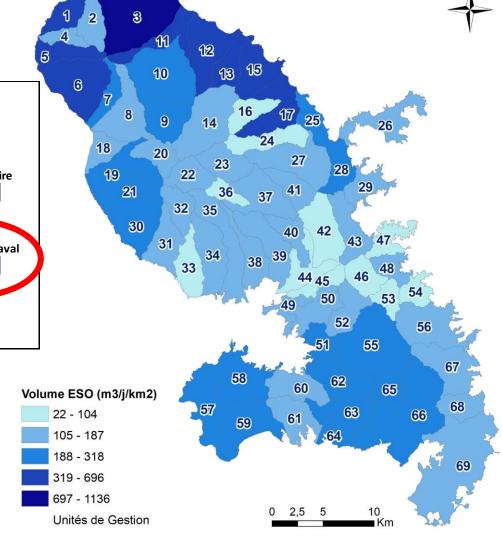
Prélèvements : Irrigation



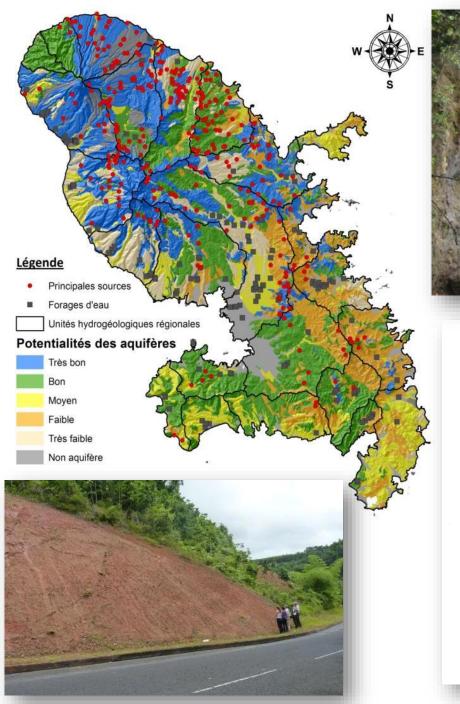

- → Non respect du débit réservé 9 mois en quinquennal sec et en février en moyenne interannuelle
- → Réévaluation du concept/calcul du débit réservé ? Mensuel ?

Débit prélevable = Débit naturel – débit réservé

Débit prélevable une année normale (mois de mars le plus pessimiste)



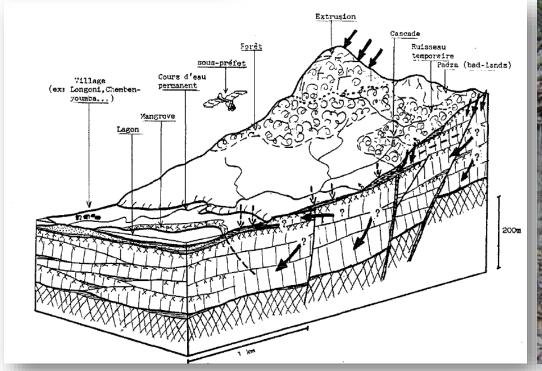
Volumes renouvelables en eau souterraine



464 Mm³ circulent à l'échelle de l'île 382 Mm³ participent au soutient à l'étiage des rivières 77 Mm³ d'eau souterraine « disponibles » en Martinique, soit environ 200 000 m3/j

→ Manque d'eau actuel 10 à 20 000 m³/j (15 à 30 forages)
Soit 10% du volume renouvelable disponible

Non prise en compte de la superposition des nappes dans le modèle



Un contexte géologique complexe et très hétérogène!

Deux principaux types de porosité en Martinique :

- Les nuées ardentes et ponces : milieu poreux
- Les basaltes et andésites : milieu fissuré et fracturé

Eléments clés à retenir

Eaux de surface

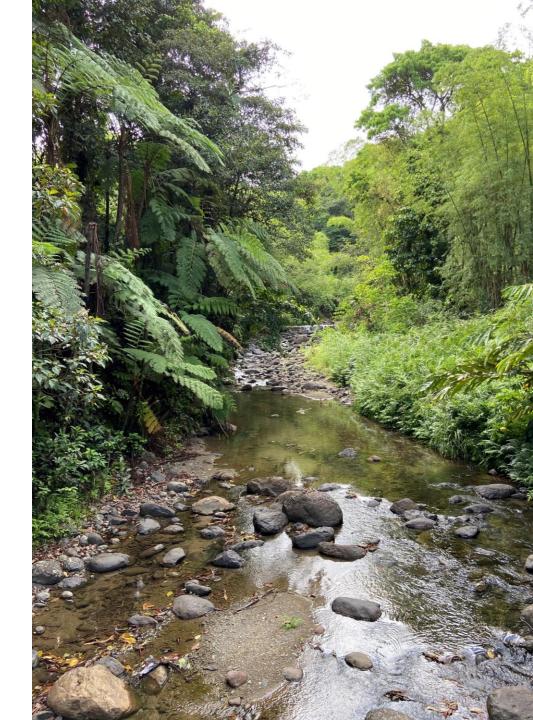
Mise en évidence des bassins versants en tension (quantification, période...)

En quinquennal sec (mars), près de 90 % des rivières ont un débit inférieur au débit réservé

Redéfinir le concept de débit réservé ?

Eaux souterraines

200 000 m3/j disponible, impact saisonnier nettement moins marqué Diversification de la ressource permettrait de palier au manque d'eau en saison sèche


→ 10 à 20 000 m³/j = 15 à 30 forages selon leur productivité Contexte géologique complexe

Modèle

Evolutif avec intégration possible de nouvelles données de stations hydrométriques et des données journalières de suivi des prélèvements (AEP, irrigation)

Perspectives

Différents scénario de répartition des prélèvements testés dans le modèle de gestion de la ressource en eau (ODE)

